Morten Mørup

Professor, DTU Compute,
Section for Cognitive Systems

Dette billede har en tom ALT-egenskab (billedbeskrivelse). Filnavnet er GS-1.png
Dette billede har en tom ALT-egenskab (billedbeskrivelse). Filnavnet er LinkedIn.png


I am professor of machine learning for the life sciences at the Section for Cognitive Systems, DTU Compute. My field of research is machine learning and data science where I research methods for unsupervised learning and pattern recognition in particular with focus on multi-way/tensor decomposition approaches, statistical complex network modeling approaches and Bayesian inference with applications to life-science data.

Short CV
Full CV

Short Biography

Copenhagen University
Bio-physics and Mathematics: (Fall 1999 – Summer 2001)
Washington State University
Exchange student following courses within Computational Neuroscience (Spring 2004)
Technical University of Denmark
Cand. Polyt. Applied Mathematics (February 2005)
PhD Intelligent Signal Processing Group at DTU Informatics (29. September 2008)
PostDoc Intelligent Signal Processing Group at DTU Informatics (2008-2009)
Assistant Professor, Section for Cognitive Systems, DTU Informatics (2010-2012)
Associate Professor, Section for Cognitive Systems, DTU Compute (2012-2019)
Professor of Machine Learning for the Life-Sciences (current position), Section for Cognitive
Systems, DTU Compute (2020-)
Stanford University
Visiting Ph.D. Student at Department for Scientific Computing (Summer 2006 – Fall 2006)
Host: Professor Gene H. Golub
UC Berkeley
Visiting Ph.D. Student at Department of Mathematics (Fall 2007)
Host: Morrey Assistant Professor Lek-Heng Lim

Key Research Domains

Tensor Decomposition

Statistical Modeling of (Dynamic) Complex Networks

(Non-)Parametric Bayesian Inference

Polytope Extraction and Archetypal Analysis

Functional Neuroimaging Data Modeling

Life-Science Data Analysis and Data Fusion

Recent popular communications
Hvad er Kunstig Intelligens (InterMat 2022)
Vigtigheden af at universiteterne udbyder data science uddannelser… (ING/DataTech 2022)
Machine Learning og Kunstig Intelligens (IDA Future Talks 2020)
Machine Learning (podcast ved Kompetencer i Tech)

Current PhD students and PostDocs
Alexander Neergaard Zahid (PostDoc, Deep Learning and EEG)
Abdulkadir Çelikkanat‬ (PostDoc, Graph Representation Learning)
Jesper Løve Hinrich (PostDoc, Probabilistic Tensor Decomposition)
Kenny Falkær Olsen (PhD)
Anna Emilie Jennow Wedenborg (PhD – project description)
Laura Rose (PhD, co-supervisor)
Anders Stevnhoved Olesen (PhD – project description)
Nikolaos Nakis (PhD- project description)
Louis Boucherie (PhD –project description, co-supervisor)

Former PhD students and PostDocs
Nathan Churchill (PostDoc, tensor and mixture modeling of fMRI)
Matthew Liptrot (PostDoc, diffusion MRI processing and modeling)
Rasmus Malik Thaarup Høegh Lindrup (PhD – project description)
Ali Mohebbi (PhD – project description)
Jesper Løve Hinrich (PhD – project description)
Rasmus Bonnevie (PhD – project description, co-supervisor)
Maciej Jan Korzepa (PhD – project description, co-supervisor)
Laura Frølich (PhD – project description, co-supervisor)
Søren Føns Vind Nielsen (PhD – project description)
Kristoffer Jon Albers (PhD, PostDoc – project description, co-supervisor)
Karen Marie Sandø Ambrosen (PhD, PostDoc – project description)
Rasmus Røge (PhD – project description)
Kit Melissa Larsen (PhD – project description)
Tue Herlau (PhD – project description)